If it's not what You are looking for type in the equation solver your own equation and let us solve it.
22x^2+8x=81
We move all terms to the left:
22x^2+8x-(81)=0
a = 22; b = 8; c = -81;
Δ = b2-4ac
Δ = 82-4·22·(-81)
Δ = 7192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7192}=\sqrt{4*1798}=\sqrt{4}*\sqrt{1798}=2\sqrt{1798}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{1798}}{2*22}=\frac{-8-2\sqrt{1798}}{44} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{1798}}{2*22}=\frac{-8+2\sqrt{1798}}{44} $
| a-(2/7)=1/14 | | x+5/6=3(x+2)/9 | | 2x(3/2x+20)=90 | | 7x-17+3=5 | | 7*x+2=130 | | 3^x+6=81 | | 3(1.085x+1)=7 | | 130/x+2=130 | | (t+42)÷3=(t+126)÷8 | | 7-5x+10=15-15x | | 0=2(8-x)(5x+2) | | n+(2/5)=2/3 | | 5^x+6=125 | | 9x+2+3x+10+10x-12=180 | | 3(x)=-4x+2 | | X=(x-60) | | 9+3r=6(r-1) | | x/2-6=-9 | | 6^4x-2=36 | | m+(1/2)=-(1/4) | | 7-5(x-2)=5(3-3x) | | -6x-5+5x=2x+3-x | | x^2+5x+4+x^2+2x^2-3x+6=0 | | -2x-17=-6 | | 95/6-n=51/6 | | 1,086=6(x+18) | | 2(10x-5)-6=4x+32 | | 2x2-7x=9 | | 2x+10+3x-3=30 | | 8(-2+n)=-19+5n | | x/2-6=-10 | | 1/2z=9-1/4 |